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Employment of the second-moment turbulence closure on
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SUMMARY

The paper presents a �nite-volume calculation procedure using a second-moment turbulence closure. The
proposed method is based on a collocated variable arrangement and especially adopted for unstructured
grids consisting of ‘polyhedral’ calculation volumes. An inclusion of 2

3 k in the pressure is analysed
and the impact of such an approach on the employment of the constant static pressure boundary is ad-
dressed. It is shown that this approach allows a removal of a standard but cumbersome velocity–pressure
–Reynolds stress coupling procedure known as an extension of Rhie-Chow method (AIAA J. 1983; 21:
1525–1532) for the Reynolds stresses. A novel wall treatment for the Reynolds-stress equations and
‘polyhedral’ calculation volumes is presented. Important issues related to treatments of di�usion terms
in momentum and Reynolds-stress equations are also discussed and a new approach is proposed. Spe-
cial interpolation practices implemented in a deferred-correction fashion and related to all equations,
are explained in detail. Computational results are compared with available experimental data for four
very di�erent applications: the �ow in a two-dimensional 180◦ turned U-bend, the vortex shedding
�ow around a square cylinder, the �ow around Ahmed Body and in-cylinder engine �ow. Additionally,
the performance of the methodology is assessed by applying it to di�erent computational grids. For
all test cases, predictions with the second-moment closure are compared to those of the k–� model.
The second-moment turbulence closure always achieves closer agreement with the measurements. A
moderate increase in computing time is required for the calculations with the second-moment closure.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Con�dence in CFD can be gained only by proving that basic errors of numerical simulations
are e�ciently reduced i.e. iteration, discretization and modelling errors. A discretization error
which presents the di�erence between the exact solution of the di�erential equations and the
exact solution of discretized algebraic system of equations can be reduced by grid re�nement
and by employing more accurate approximations. An iteration error, the di�erence between
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the iterative and the exact solution of the algebraic equation systems, can also be reduced to
negligible levels. On the modelling side, turbulence models appear to be the largest and the
most common source of error in Reynolds-averaged Navier–Stokes (RANS) based numerical
simulations as the �ows in practice are predominantly turbulent. Despite some progress in
recent years, turbulence models still bring a lot of uncertainties into the use of CFD. So it is
mandatory to use the most advanced and accurate turbulence models.
Nowadays, it is common practice to use unstructured grids. With the reduction of meshing

time, even the ‘poor quality’ grids consisting of computationally awkward cells (e.g. higher
aspect ratios, twisted faces, negative volumes, negative wall normal distances, small opening
angles between two neighbouring faces etc.) are used in calculations. This undoubtedly leads
to a high degradation of a convergence rate. In addition, it is more important to use higher
order di�erencing schemes for all �uxes, because numerical solutions can be very dependent
on the employed ‘non-body �tted’ grids. Uncertainties in de�nitions of boundary conditions
may produce unexpected problems as well. Moreover, advanced and complex models like the
second-moment closure require careful use and deeper understanding of the basic features of
�ows e.g. many oscillating convergence behaviours during steady state calculations may be
related to capturing some transient phenomena and not to the model’s numerical instability,
and hence transient calculations are required to obtain numerically and physically accurate
results. Therefore to date, the most common turbulence models implemented in CFD codes
are of the eddy viscosity type e.g. standard k–�, non-linear k–� and k–! models. Even though
limitations of these models are very well known, they are used due to numerical robustness and
the fact that parametric studies do not often require absolute accuracy but rather calculation
of relative di�erences caused by speci�c parametric variations. However, more reliable and
re�ned turbulence models than those of the eddy-viscosity type are clearly required. In the
case of the second-moment closure, attempts of using it for complex industrial applications
have been reported, but commercial CFD vendors still do not recommend it for ‘everyday’
applications. It seems that so far, a robust numerical algorithm is not available for the second-
moment closure.
In the last decade, a number of papers have been reported on the implementation of

the second-moment closure in �nite volume codes e.g. References [1–4], etc. The starting
point of most of the reported work in this area is the set of governing Reynolds-Averaged
Navier–Stokes equations solved for dependent variables in Cartesian co-ordinates and by us-
ing collocated variable arrangements. The same approach is also used in many commercial
CFD codes e.g. STAR-CD, FLUENT, CFX, AVL FIRE/SWIFT, etc. The advantages of this
approach, like having a single set of computational cells covering a non-orthogonal calcu-
lation domain, easier implementation of boundary conditions and general simplicity without
diminishing the accuracy of simulations, direct many CFD developers to follow such practice.
Certainly, this method has weak points. The basic drawback is the coupling of velocity and
pressure �eld due to the placement of velocity and pressure at the same calculation points.
This problem is usually overcome by means of the well known Rhie and Chow [5] interpo-
lation practice for the velocity prediction at the face of the control volume. However, higher
grid distortions enhance the burden on this method very often bringing the whole procedure
to the edge of usability.
Numerical algorithms based on the control volume method often di�er in interpolation

techniques employed which allow for di�erent types of grids. The work in this paper is based
on the latest and most advanced ‘polyhedral’ approach where the algorithm is adopted for
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Figure 1. Calculation volumes and an arbitrary interface.

the calculations on control volumes consisting of arbitrary number of faces (see Figure 1).
This allows an easy use of an arbitrary interface and a local grid re�nement which further
optimizes meshing as well as computing time [6–8]. But, such an approach further complicates
the implementation of second-moment closures and even requires a special adoption of existing
treatments. Therefore, the main objective of this paper is to describe a simple and e�cient
method for the employment of the second-moment closure for unstructured grids. The method
proposed here can also be used for the employment of some simpler turbulence models
e.g. non-linear k–� or algebraic stress model. It is shown that some previous treatments are
no longer necessary which simpli�es a very complex implementation procedure. The paper
concentrates on the main challenges: a treatment of di�usion term in momentum equations,
implementation of the wall function in the Reynolds-stress equations, a treatment of di�usion
in the Reynolds stress and dissipation rate equations, and an inclusion of 2

3 k in the pressure
to enhance coupling between pressure and turbulence �eld.
To demonstrate the numerical method, the Reynolds-stress model of Speziale et al. [9] is

selected to represent the second-moment closure. Computational grids used for calculations
include an arbitrary interface, a local grid re�nement and all types of computational cells up
to six faces (polyhedral volumes appear on the arbitrary interface). The results show that the
second-moment closure can be used on unstructured grids and for real-life CFD applications.

2. MATHEMATICAL MODEL

The governing equations for the mass and momentum can be written in the Cartesian tensor
notation as

@�
@t
+
@
@xj
(�Uj)=0 (1)
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where Ui stands for the mean velocity vector, p, � and � are the pressure, the �uid density
and the dynamic viscosity, respectively. Correlations uiuj, known as Reynolds stresses, have
to be de�ned before the momentum Equations (2) can be solved. For the calculation of the
last test case presented in this paper, the �ow in an intake port, the density is calculated from
the equation of state, thus

�=
p
RgT

(3)

where Rg is the gas constant and T is the temperature.
With the k–� eddy-viscosity model, the Reynolds stresses are evaluated from Bousinessq’s

assumption, given by

−�uiuj=2�tSij − 2
3
��ijk (4)

where Sij is the mean rate of the stress tensor, given as

Sij =
1
2

(
@Ui
@xj

+
@Uj
@xi

)
(5)

and turbulence viscosity �t is evaluated from

�t =C��
k2

�
(6)

In order to close the k–� model, it is necessary to solve equations for the turbulence kinetic
energy k and its dissipation rate �:
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]
(8)

where the production of turbulence energy is given by Pk = − uiuj@Ui=@xj. The model co-
e�cients appearing in the above equations are assigned their standard values (standard k–�
model [10]):

C�=0:09; C�1 = 1:44; C�2 = 1:92; �k =1:0; ��=1:3

The compressible correction term in the �-equation is re-written in another form by using the
continuity equation, thus

−2
3
(2− C�1)�� @Uk@xk

=
2
3
(2− C�1)�

(
@�
@t
+Uk

@�
@xk

)
(9)
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For the last case in this paper, the �ow in an intake port, the steady state calculations were
su�cient as calculations were performed on static grids. Hence compressibility e�ects were
included in the dissipation rate equation only via term Uk(@�=@xk), see Equation (9), which is
relatively small for this type of �ow so that the case can be considered as weakly compressible.
The other test cases presented here are incompressible.
Nevertheless, it is well known that the standard k–� model does not give adequate repre-

sentation of the turbulence �eld in most cases and especially not in the �ows where normal
stresses and their anisotropy form a signi�cant contribution to the momentum balance. Al-
though the model has been improved for various purposes, the capability to predict certain
�ows and especially separated �ows, is and will stay poor.
The second-moment closure adopted here is the high Reynolds number Reynolds-stress

variant of Speziale, Sarkar and Gatski (SSG) [9]. Therefore, the Reynolds-stress equations
given as

@
@t
(�uiuj) +

@
@xj
(�uiujUk)=Pij +Dij − �ij + �ij (10)

where a di�usion by turbulence �uctuations was modelled with the simple gradient-transport
hypothesis (Cs equal to 0.22) and viscous dissipation was assumed to be isotropic, can then
be written as
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where bij= uiuj=(2k)−�ij=3 and Wij=0:5(@Ui=@xj−@Uj=@xi) are the Reynolds-stress anisotropy
and the mean vorticity tensors respectively. The dissipation rate was obtained from the standard
equation:
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A turbulence kinetic energy k is obtained from the sum of the normal Reynolds stresses
k= 1

2

∑
uiui. The model constants of the Reynolds stress transport model based on the SSG

pressure-strain formulation are as follows, Speziale et al. [9]:

C1 = 3:4; C∗
1 = 1:8; C2 = 4:2; C3 = 0:8; C∗

3 = 1:3; C4 = 1:25

C5 = 0:4; Cs=0:22; C�=0:183; C�1 = 1:44; C�2 = 1:83

It is widely accepted that second-moment turbulence closures o�er in principle a better physical
basis for modelling complex non-equilibrium turbulent �ows. Separation and recirculation
regions, strong streamline curvatures, impingement and strong three-dimensionality are only
some of the features better reproduced by second-moment closures when compared with the
k–� model.

3. NUMERICAL PROCEDURE

The discretization of the governing di�erential equations is obtained using a cell-centred �nite
volume approach. In the method used here, the governing equations are integrated, term-
by-term, over the ‘polyhedral’ control volumes, see Figure 1. Such discretization practice
was recently explored in other publications starting with Demirdzic and Muzaferija [6], and
continuing with Ferziger and Peric [7], Marthur and Marthy [8] etc. Hence the method has
been applied and proved on various applications. The method rests on the integral form of the
general conservation law. Thus, for the control volume with the outward surface (cell-face)
vectors A=Ak ik , all modelling equations can be described as

d
dt

∫
V
�� dV︸ ︷︷ ︸

Rate of change: R

+
∮
A
��Uk dAk︸ ︷︷ ︸

Convection: C

=
∮
A
�kk�

@�
@xk

dAk︸ ︷︷ ︸
Di�usion: D

+
∫
V
sV� dV +

∮
A
sA�k dAk︸ ︷︷ ︸

Sources: S

(13)

where a general variable �(xk ; t) can represent either scalars or vector and tensor �eld com-
ponents. Here, the Cartesian coordinate system (x; y; z) with the unit vectors (i; j;k) is used
and tensor notation is employed. In the above equation, � is the �uid density, t is time, Uk
are components of the �uid velocity vector, �kk� is the di�usion coe�cient for the variable �
(in this case repeated indices do not imply summation), sV� and s

A
�k are the volumetric and

surface source terms, respectively. The cell-face based connectivity and interpolation prac-
tices for gradients and cell-face values are introduced to accommodate an arbitrary number of
cell faces. A second-order midpoint rule is used for integral approximation. In terms of the
notation shown in Figure 1 for a typical grid cell P with the volume V surrounded by it’s
neighbours Pj, the discretized control volume equation can be written as

d
dt
(�PVP�P) +

nf∑
j=1
Cj −

nf∑
j=1
Dj=(sV�)PVP +

nf∑
j=1
(sA�kAk)j (14)

where Cj and Dj are convective and di�usion transport through the face j, respectively, and
nf is the number of cell-faces.
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With the use of linear interpolation, the cell face values can be calculated as

�j=fj�p + (1− fj)�pj (15)

where fj is the cell face interpolation factor. In the case that the vector connecting two
centres P and Pj does not pass through the face centre, one can introduce a correction term
as suggested by Demirdzic and Muzaferija [6], thus

�j=�j′ +∇�j′(rj − rj′) (16)

where the point j′ can be the midpoint between centres P and Pj. Following this, fj is equal
to 0:5 and the vector between points j and j′ can be easily computed.
The cell gradients can be calculated by using either the Gauss’ theorem, thus

∇�p= 1
Vp

nf∑
j=1
�jAj (17)

or a linear least-square approach e.g. Muzaferija [11]. Using Gauss’ theorem and with the
simple mathematical reconstructions to replace vertex values only with the contributions from
cells P and Pj, one can arrive at the following formula for the cell face gradient, thus

∇�j=∇�j +
Aj
Ajdj

[
(�Pj − �P)−∇�j · dj

]
(18)

where

∇�j=fj∇�p + (1− fj)∇�pj (19)

These interpolation practices are used to derive the terms in the discretized Equation (14)
as presented below.

3.1. Di�usion term

One of the key points for the e�cient implementation of the second-moment closure is the
treatment of di�usion terms. To simplify this task and to make a numerical code more mod-
ular, some equations are rewritten in order to always get an isotropic di�usion coe�cient
while the rest of the terms are introduced as volumetric source terms on the right-hand side
of the equations. Treating these sources in a deferred correction manner by using values from
the previous iteration step, a complete numerical algorithm is further stabilised. For exam-
ple, a di�usion term given in Equation (11) for the Reynolds-stresses is reformulated before
discretization, thus

@
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]
(20)

as well as a di�usion term from the dissipation rate equation is now written as
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@xj

[
�e�
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where �e� =�+ �t is e�ective dynamic viscosity.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:377–407



384 B. BASARA

Therefore, a common isotropic di�usion coe�cient can be extracted for all equations, e.g.
for Equations (20) and (21) an isotropic di�usion part is given as

@
@xk

[
�e�

@uiuj
@xk

]
and

@
@xk

[
�e�

@�
@xk

]
(22)

Using Equation (18) for cell face gradients, the di�usion term can be written as

Dj= ���j
A2j
Ajdj

(�Pj − �P)︸ ︷︷ ︸
normal-di�usion

+ ���j∇�j
(
Aj −

A2j
Ajdj

dj

)
︸ ︷︷ ︸

cross-di�usion

(23)

and used in the same form for all equations. The cross-di�usion part of Equation (23), which
vanishes on the orthogonal grid, is introduced in discretized equations as surface source term,
see Equation (14). Obviously, a di�usion coe�cient �e� is used for turbulence kinetic energy
and dissipation rate equations de�ned with the standard k–� model but also now for Reynolds
stresses de�ned with the Reynolds-stress model. The remainder of Equations (20) and (21)
goes in the discretized equation (14) as a volumetric source after applying Gauss’ theorem
or a least-square method. With this approach, di�usion terms in all equations can be solved
with the same part of code just replacing di�usion coe�cients and source terms.
For the momentum equations, a di�usion term is derived from �(@Ui=@xj) − �uiuj, where

uiuj are Reynolds stresses obtained from their own transport equation in the case of the
Reynolds stress model or from di�erent assumptions depending on the model employed e.g.
Boussinesq’s formula for k–� model. It is clear that in the case of the standard k–� model, a
di�usion term has the same form as given with Equation (22), see Equations (2) and (4). For
the second-moment closure, further manipulations are required to get a more suited form for
discretization. The Reynolds stresses predicted by the second-moment closure are introduced
in the momentum equations using the following formulation [12, 13]:

uiuj= uiujk−�iso︸ ︷︷ ︸
A:source+di�usion

+ uiujmodel − uiuj iso︸ ︷︷ ︸
B:source

(24)

where uiuj iso is an ‘isotropic’ part de�ned by Boussinesq’s formula and uiujmodel are obtained
from the Reynolds-stress equations. Equation (24) can be now written as

uiuj= − 2�tSij + 23 k�ij + uiujmodel − uiuj iso (25)

If we take uiuj iso = − 2�tSij + 2
3 k�ij then the term

2
3 k�ij can be incorporated in the pressure

following common practice applied for the k–� model [14] (see Equations (2) and (4)). This
means that the pressure is now collectively represented by p+ 2

3 k. Therefore, in addition to
the normal and cross di�usion from the term 2�tSij as in the standard k–� model (see Equation
(24)), the underlined term on the right-hand side of the momentum equations (see Equation
(2)) appears as

−@p
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which is then introduced in the discretized Equation (14) as a volumetric source term after
applying Gauss’ theorem or a least-square method. Note that the same procedure can also be
used for some other models, e.g. uiujmodel can be derived by the algebraic stress model. This
procedure is also useful for zonal modelling as the models can be changed from cell to cell
in one line of code.

3.2. Pressure–velocity coupling

The overall solution procedure is iterative and is based on the SIMPLE [15] algorithm. In
this algorithm, a pressure-correction equation is derived from the discretized equations for
continuity and momentum. The discretized momentum equation for node P can be written as

UP=

nf∑
j=1
ajUPj + Su

aP
− VP
aP

∇pP (26)

where the pressure gradient is treated separately from the sources Su. The cell-face velocities
are now obtained by interpolation of the above equation and inclusion of the pressure gradient
directly on the face [1, 6, 14], thus

U∗
j = �Uj −

(
V
aP

)
j
(∇pj −∇pj) (27)

After replacing the pressure gradient ∇pj by the face gradient, the face velocity can be
calculated as

U∗
j = �Uj − 1

2

(
VP
aP
+
VPj
aPj

)
Aj

Aj · dj
[
(pPj − pP)−∇pj · dj

]
(28)

where the overbars signify terms calculated by linear interpolation from nodes P and Pj.
By starting from a guessed pressure �eld, the calculated velocities do not necessarily satisfy

the continuity equation and so a correction has to be introduced to those velocities in order
to ensure this. The role of this correction can be seen from considering the discretized form
of the continuity equation, expressed as

d
dt
(�∗PVP) +

nf∑
j=1
ṁ∗
j = Sm (29)

The quantity Sm represents a false mass source which should disappear when a converged
solution is attained. The simple form of the face velocity correction needed to enforce a
continuity can be written as

U′
j = −

(
V
aP

)
j

Aj
Aj · dj (p

′
Pj − p′

P) (30)

By substituting the velocities by their corrections, mass �ux corrections ṁ′
j are obtained and

those are then used to obtain the corrected �uxes, thus:

ṁj= ṁ
∗
j + ṁ

′
j (31)
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Manipulation of the above now gives
nf∑
j=1
ṁ′
j + Sm=0 (32)

This combined with Equation (30) yields the pressure correction equation:

a′Pp
′
P=

nf∑
j=1
a′Pjp

′
Pj − Sm (33)

The solution of this equation yields the pressure corrections p′, which are now used to evaluate
the velocity corrections from Equation (30) and obtain new �eld values. Again, the newly
corrected values are used in the solution of the momentum and pressure-correction equations
until convergence is attained.
For the second-moment closure, Obi [16] introduced Reynolds-stresses next to the pressure

in Equation (28) to couple velocities and pressure additionally with the Reynolds-stresses (see
also Reference [17]). This method is denoted here as method-1. Nevertheless, in the case of
non-orthogonal control volumes, the Reynolds-stresses at the face of the control volume have
to be calculated in the local coordinate system in which one axis is normal to the face. This
might be very cumbersome procedure, see original reference [16]. Basara and Younis [18]
did a similar coupling approach but only taking into account the positive part of the projected
Reynolds-stresses to ensure stronger coupling between these variables. However, this approach
is abandoned here as one part of the turbulence �eld is directly included in the solution of
the pressure correction equation, namely (p+ 2

3 k) and then directly coupled with the mean
�ow via Equation (28), the same approach applied as for the standard k–� model. When
comparing convergence rate in certain cases, it is not obvious which method is more e�cient
but the simplicity of the method-2 for non-orthogonal grids, less programming lines and better
suitability for the pressure boundary (see Section 3.3.2), should give an advantage to the new
proposed method. Here, as a simple example, the convergence rate for the calculation of
developing �ow in a straight duct are shown in Figure 2. The mass residuals obtained by
using method-2 shows that better convergence is obtained than in the case when method-1 is
used. This is due to the employment of the pressure boundary speci�ed at the outlet of the
duct, see Section 3.3.2. Otherwise, both methods should perform similarly.
An analogous approach was used in the past by many authors (e.g. References [2, 4]) to

calculate the Reynolds-stresses on the faces directly coupled with velocity �eld, but here this
practice was found to be unnecessary when the special interpolation practice was used in con-
junction with the deferred correction approach for di�usion terms as explained in Section 3.1.
Figure 3(a) shows the streamlines for the backward facing step as predicted by RSM using

the procedure described above. It is evident that an unrealistic rearward streamline curvature at
the end of separation is predicted as reported elsewhere e.g. References [2, 18–20]. However,
looking at that region (the part of the solution very sensitive to a coupling approach and a
wall treatment also), see Figure 3(b), it is clear that the predicted velocity has a very smooth
distribution and no signs of de-coupled ‘zig-zag’ solution.

3.3. Boundary conditions

The convection and di�usion �uxes on the boundaries are calculated the same as for the
internal faces. For the di�usion �ux, Equation (23) is used and the upwind scheme for the
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Figure 2. Convergence rate history by computation of a straight duct using the ‘stan-
dard’ method-1, extended Rhie and Chow method [5] with inclusion of the Reynolds

stresses and the new method-2 incorporating 2
3 k in pressure.

Figure 3. Streamlines (a) and velocity vectors in the area of an unrealistic rearward streamline curvature
at the end of separation (b) as predicted by the Reynolds-stress model.

convection �ux. The types of boundaries explained here in more detail are the wall boundary
and the pressure boundary due to speci�c issues regarding the implementation of the second-
moment closure.

3.3.1. Wall boundary. In this study, both of the models have been used only in conjunction
with standard wall functions. In the momentum equations, the wall functions are implemented

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:377–407



388 B. BASARA

by de�ning the e�ective near-wall turbulent viscosity as

�w =�
y+P
U+
P
; U+

P =



y+P if y+P¡11:63

1
�
ln(Ey+P ) if y+P¿11:63

(34)

with �=0:41 and E=9. The non-dimensional wall distance y+P is given as

y+P =
�PC

1
4
� k

1
2
P �n

�
(35)

where �n denotes the normal distance from the near-wall node P (the node closest to the
wall) to the wall.
For the turbulent kinetic energy equation, the �ux of turbulence kinetic energy at the wall

is taken to be zero, a condition simply enforced by setting the appropriate �nite-di�erence
coe�cients to zero. The values of k at the node closest to the wall is therefore obtained
from the solution of its equation. A single modi�cation to the standard equation is required:
it concerns the way in which the rate of production of k is evaluated at the grid closest
to the wall. Dissipation rate � is �xed for the �rst-to-wall cells by assuming that turbulence
is in local equilibrium, �P=C

3=4
� k

3=2
P =(��nP). In the case of Reynolds stresses there are two

main approaches, the �rst one was proposed by Lien and Leschziner [3] who derived the
Reynolds-stresses in the �rst-to-wall cell by focusing on the stress equations, see Equation
(11), applicable to local energy equilibrium. The ‘log-law’ derived stresses are wall-oriented
and should be transformed to the Cartesian co-ordinate system to be in agreement with the
procedure required for non-orthogonal geometry. The second approach in which the Reynolds-
stress components are solved at the nodes closest to the wall seems to be more robust but
is complicated to implement with wall functions. A simple treatment has been proposed by
Basara [12, 21] to ensure ‘reasonable’ values of velocity gradients by using the log law. Thus:

@UP
@n

=

√
	wall=�
��n

(36)

where 	wall is the wall shear stress de�ned with the standard wall function approach by using
velocity at the near wall cell parallel to the wall UP. ‘Very near’ wall velocity aligned with
the wall can be derived from Equation (36), thus:

|Uwall|= |UP| − 1
�

√
	wall=� (37)

Additional ‘smoothing of sources’ for unstructured grids and polyhedral control volumes can
be made by calculating ∇U in the �rst to wall cells by using available Uwall from Equation
(37). Then a new velocity can be re-calculated as

UIface =UP + �l · ∇U (38)

where UIface is at an imaginary face (IF) placed at the distance �n from the cell centre P (P
is the centre between the wall and IF), see Figure 4. �l is the vector between P and IF. Now,
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Figure 4. Near-wall boundary cell.

the ‘very near’ wall velocity can be recalculated as

|Ucorrwall|= |UIface| − 2
�

√
	wall=� (39)

As for the standard wall function, it is assumed that turbulent stress across the near wall cell
is constant and is taken as being equal to the wall shear stress. Finally using the ‘near-wall’
velocity from Equation (39), production stress terms can be updated with the velocity gradients
which now correspond to the ‘log-law’ velocity gradient in the direction normal to the wall.
Such predicted Reynolds-stresses when introduced to momentum equations �t much better to
the wall stresses predicted from the wall functions. Otherwise very �ne grid distribution near
the wall is required to get smooth velocity pro�les on the wall. However, a di�erence between
Equations (37) and (39) and with that, a di�erence between calculated velocity gradients near
the wall, is decreased and the results are further improved by the following simple correction
of the stress production. The production of turbulence kinetic energy can be obtained by
summing up the production stress terms Peqk =

1
2 Pii and then compared with the production

term obtained from the log law Pwfk = 	wall(@UP=@n) in order to provide a correction factor
f=Pwfk =P

eq
k which is then used to correct stress production terms in Reynolds-stress equations.

Direct Numerical Simulation data of Kim et al. [22] for the fully developed turbulent
�ow with Re=13750 in a plane channel was used for comparisons. The log law considering
velocity distribution is well captured as shown in Figure 5. The distribution of normal stress
components and their anisotropy is also fairly well described, see Figure 6. It should be pointed
out that y+ value at the �rst near to wall cell was 12.5. For the curved channel measured by
Hunt and Joubert [23], shown in Figure 7(a), two di�erent grids, a structured grid (see Figure
7(b)) and an unstructured grid consisting of tetrahedral internally and prismatic elements on
the wall (see Figure 7(c)), were employed to check the implementation of the wall functions.
The predicted velocity pro�les at the outlet of the channel are in a good agreement with the
measurements as shown in Figure 8.

3.3.2. Pressure boundary. The pressure boundary is frequently used in many real-life CFD
applications. Usually the constant value for the pressure is prescribed across the boundary.
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Figure 5. Computed mean velocity in a plane channel. Symbols: DNS, Kim et al. [22].

Figure 6. Computed stress components in a plane channel. Symbols: DNS, Kim et al. [22].

Following Equation (28), the boundary velocity can be obtained from:

Ub =UP −
(
VP
aP

)
Ab

Ab · db [(pb − pP)−∇pP · db] (40)

and the velocity correction at the pressure boundary can then be approximated as

U′
b ≈ −

(
VP
aP

)
Ab

Ab · db (p
′
b − p′

P) (41)

where the pressure boundary correction is set to zero, p′
b=0. Figure 9 shows the iso-lines

of (p + 2
3 k) predicted by k–� model and (p) predicted by RSM model (this time with no
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Figure 7. Computational domain (a), hexahedral grid (b) and tetrahedral grid (c) used for calculations.

incorporated 2
3 k). Now, it is clear that the de�nition of the constant value at the boundary,

in this case at the outlet, matches the predictions with the k–� model. Hence the term 2
3 k

is incorporated in the pressure for the second-moment closure as shown in Section 3.1. New
predictions as shown in Figure 10, will be more consistent with the constant pressure or with
the constant (p+ 2

3 k) actually at the boundary and with that, a better convergence rate can
be expected (see Figure 2). Note that for the developed �ow in a plane channel, it can be
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Figure 8. Computed mean velocity at the exit of the curved channel. Symbols:
Measurements Hunt et al. [23].

Figure 9. Iso-lines of (p+ 2
3 k) predicted by the k–� model (top) and (p) predicted by RSM (bottom).

written for the y-normal to the �ow direction that

0= − @p
@y
+
@
@y
(−�v2) (42)

Therefore, when the normal stress v2 is incorporated in the pressure or (p+v2), the predicted
‘iso-lines’ will be the nearest to the constant value (have in mind that this was not a fully
developed channel �ow but close to that) as shown in Figure 10. However, it is more practical
to include the term 2

3 k in the pressure as done in this work than to search for appropriate
Reynolds-stress components.

3.4. Other computational details

A deferred correction approach is also used for the treatment of convection �uxes, thus

Cj= ṁj�UDSj + 
�|ṁj|’j(�Pj − �P) (43)
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Figure 10. Iso-lines of (p+ 2
3 k) predicted by the k–� model, (p), (p+

2
3 k) and (p+ v

2) predicted by
RSM (RSM-1, RSM-2 and RSM-3, respectively) in a plane channel.

where mass �ux ṁj is given as ṁj=�UjAj, and 
� is the blending factor between UDS and
higher order scheme (06
61). The underlined term is calculated by using values from the
previous iteration step. The �ux limiter ’j is provided by the higher order di�erencing scheme
used to ensure a bounded solution. In this work, the SMART (AVL SMART as proposed by
Przulj and Basara [24]) and MINMOD [25] schemes were used as a compromise between
accuracy and convergence properties.
The rate of change (see Equation (13)) is discretized by two implicit schemes, namely �rst

order accurate Euler (two level) scheme and second order accurate three time level scheme.
The outcome of all presented above is a set of algebraic equations: one for each control

volume and for each transport equation. An algebraic equation can be written concisely as

aP�P=
nf∑
j=1
aj�Pj + S� (44)

where nf is the number of internal cell-faces; aP and aj are coe�cients and S� is the source
term. Thus, for a computational domain with M control volumes, a system of M×N algebraic
equations needs to be solved for N dependent variables �. Each equation for the given
variable is decoupled by treating other variables as known, which leads to a sub-set of M
linear algebraic equations for each dependent variable. The linearized algebraic equations are
solved by preconditioned conjugate gradient methods. The symmetric gradient method is used
to solve equations with the symmetric matrix and the biconjugate method (Bi-CGSTAB) of
Van Der Vorst [26] for equations with asymmetric matrix. Both methods are used with an
incomplete Cholesky preconditioning technique [27].

4. RESULTS AND DISCUSSIONS

The performance of the methodology described above is assessed here in the following exam-
ples: a 180◦ turn-around duct, a vortex shedding �ow around a square cylinder, a 3D Ahmed
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Figure 11. Mean velocity and kinetic energy pro�les at two selected locations along the �ow in a 180◦
turned U-bend: (a) and (c) at 90◦ and (b) and (d) at 180◦.

idealized car model and a 3D intake port. The aim is to show applicability of the proposed
numerical algorithm and not to analyse the results in detail.
The �rst example is based on the data of Monson et al. [28] in a 180◦ turn-around duct

formed from a rectangular channel with an aspect ratio of 10. The �ow is two dimensional
along the mid-plane and the results obtained in this work are reported for the Reynolds num-
ber of 106. The results predicted with the k–� model and the full Reynolds-stress model are
almost identical to the predictions of Basara et al. [29] who reported a grid independent
solution and are very similar to other model’s performances reported elsewhere e.g. Shur
et al. [30]. Therefore, it is also assumed that the grid of 22 000 computational cells used
in this work, is su�ciently �ne not to in�uence turbulence models testing. The challenge
for the turbulence models is to predict the separation region after the bend. Figures 11(a)
and (b) compared the predicted and measured axial mean-velocity pro�les at two locations
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Figure 12. Streamline patterns of the �ow in 180◦ turned U-bend obtained by the standard k–� model
(a) and the Reynolds-stress model (b).

within the bend at 90◦ and 180◦. The RSM model captures the velocity pro�le shape at
both positions quite contrary to the k–� model. It is also clear that the turbulence kinetic
energy is well predicted with the Reynolds-stress model, see Figures 11(c) and (d). The
di�erences between the models are quite substantial, especially in the region closest to the
inner wall. The trend predicted with the k–� model is completely wrong. A reduction of
the turbulence kinetic energy near the convex wall predicted with the RSM model causes the
boundary layer to be less able to withstand the adverse pressure gradients encountered on
entry to the duct with the result that �ow detaches from the surface. The predicted stream-
lines are shown in Figure 12. The measured skin-friction coe�cients (see Monson et al. [28])
suggest that the predicted size of the separation bubble by the Reynolds-stress model is ap-
proximately correct. The use of the correction for the production of turbulence kinetic energy
as given in Section 3.3.1, causes a smoother attachment at the end of the separation bub-
ble than shown in previous reported predictions, e.g. Basara et al. [29]. The Reynolds-stress
model was switched on after performing a few hundred iterations with the k–� model, but
there is no need to wait for the full converged solution with the k–� model before contin-
uing with the RSM model. The di�erence in the computing time was around twice and the
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Figure 13. Details of the grids used for calculations: (a) 6822, (b) 21 800 and
(c) 65 397 computational cells.

memory required for the Reynolds-stress model was 25% higher than in the case of the k–�
model.
A transient test case chosen for this study is the one studied experimentally by Lyn [31]

at Re=21400. The dimensions of the domain are taken to be 20D × 24D. Calculations are
performed as two dimensional. Three calculation grids are used in order to obtain grid in-
dependent solution. Grid sizes are: 6822, 21 800 and 65 397 cells, respectively. Some details
of the grids are shown in Figures 13(a)–(c). Grid (b) is an orthogonal grid, and from a
numerical point of view represents the simplest grid. The other two grids consist of vari-
ous cell types and represent ‘typical’ grids nowadays produced with automatic mesh gener-
ators. At the inlet of the solution domain (which is placed at distance of 4:5 × D from the
square cylinder), a uniform velocity pro�le is de�ned to give the Reynolds number based
on cylinder height equal to 21 400. The relative turbulence intensity of 2% (reference is
made to the measurements of Lyn [31]) and the ratio of the turbulent to molecular viscos-
ity (�t=�)=100 are prescribed and used to calculate turbulence variables at the inlet. At
the outlet, a zero gradient condition along the local co-ordinate connecting the interior and
boundary cells is employed for all variables. The side and top planes are de�ned as symmetry
planes.
Using �ne grids and accurate di�erencing schemes for the convection term such as AVL

SMART (grid (a)) and MINMOD (grids (b) and (c)), it is ensured that numerical error
plays a minor role. Following that, the main integral parameters predicted for all three grids
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Figure 14. Time evolution of lift coe�cient as predicted by RSM.

Table I. Predictions and measurements of integral parameters.

Cd Cl′ Str

Present RSM 2.28 1.39 0.141
Franke and Rodi [33], RSM 2.15 — 0.136
Rodi et al. [34], LES 2.30 1.15 0.13
Kato and Launder [35], k–� 2.05 — 0.145
Measurements 2.16–2.28 1.1–1.4 0.130–0.139

do not di�er signi�cantly. For example, the full RSM model calculates the time-mean drag
coe�cients of 2.15, 2.28 and 2.23, respectively. The standard k–� model also predicts vortex
shedding, but it estimates main parameters much lower than measured levels, e.g. Cd=1:8
and Str =0:119. Figure 14 shows time histories of lift coe�cient for grid (b) as calculated by
using RSM model. Table I provides comparisons between present calculations with previous
calculations and measurements. A set of measurements [31, 32] is included to provide adequate
validation data. The present predictions are close to the measurements, slightly overestimating
all integral parameters. The phase averaged data was calculated as suggested by Rodi et al.
for the Workshop on LES of Flows Past Blu� Bodies [34]. The time period between two
successive maximums is divided into 20 equal intervals and the predicted streamlines are
compared with the measurements for the same phases (Phase 01, 05, 09 13, 17) as chosen in
the Workshop. Nevertheless, Figures 15–19 show a very good agreement between predictions
and measurements for each of the phases.
The next example, the Ahmed body [36], is a three-dimensional case where the local grid

re�nement is employed by using an arbitrary interface, see Figure 20. This idealized vehicle
model represents the key benchmark for validation of the turbulence models regarding external
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Figure 15. Phase averaged streamlines (Phase 01): measurements (top) and
predictions (bottom) with RSM model.

Figure 16. Phase averaged streamlines (Phase 05): measurements (top) and
predictions (bottom) with RSM model.
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Figure 17. Phase averaged streamlines (Phase 09): measurements (top) and
predictions (bottom) with RSM model.

Figure 18. Phase averaged streamlines (Phase 13): measurements (top) and
predictions (bottom) with RSM model.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:377–407



400 B. BASARA

Figure 19. Phase averaged streamlines (Phase 17): measurements (top) and
predictions (bottom) with RSM model.

car aerodynamics. This case allows investigation of the back slant e�ect on the overall drag
force. At a certain angle of the slant, a vortex breakdown phenomena appears causing the
sudden pressure drop acting on the model. The measurements were recently repeated by
Lienhart et al. [37] during the course of European project models for vehicle aerodynamics
(MOVA). The new data was used in ERCOFTAC Workshop, Jakirlic et al. [38], where seven
numerical groups provided very di�erent calculation results depending on the calculation grid
and the turbulence model used. Therefore, in this work due attention was given to optimize
the grid size. The case with the back slant angle of 25◦ is calculated here. The �rst step
was to �nd the grid independent solution in two dimension and then to proceed with further
meshing by adding the point in the third dimension. The �nal grid contains 523 000 cells
(see Figure 20(a)) mainly hexahedral but also polyhedral cells created along the arbitrary
interface. Local grid re�nement with the arbitrary interface creates a box around the body
ensuring the good grid quality, see Figure 20(b). Despite the work of Basara and Alajbegovic
[39] where it is shown that only a transient calculation is appropriate for such a simulation
as the vortex shedding is present, here the steady solution is imposed by the employment
of the symmetry plane at the mid section of the body, as the aim was only to present a
possibility of running RSM on this type of grid. The �rst next to the wall cells ensure y+

values on the body to be in the range between 20 and 50. Attention was also given to the
inlet boundary conditions. The measured velocity pro�le was used for extrapolation at the
inlet boundary faces. A minimum inlet distance from the Ahmed body has been validated
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Figure 20. Ahmed body. A computational grid inside (a) and outside (b) of the local re�ned box.

and it was found that 0:5m is su�cient in order not to in�uence results. The best agreement
was achieved when the inlet pro�le was taken from the same set of measurements used for
comparisons (inlet pro�le was taken from x= − 1:443 m, Lienhart et al. [37], the centre of
the co-ordinate system is at the end and bottom of the model). The second order MINMOD
scheme was used for the present calculations. The chosen pro�les for comparisons with the
measurements are placed at the symmetry plane on the slant of the body at x= − 0:143 and
−0:063 m, respectively. It is obvious that the k–� model fails to predict separation on the
back slant while the RSM separates but does not attach to the slant again as reported by
measurements, see velocity pro�les in Figures 21(a) and (b). The normal stress components
as shown in Figures 22(a) and (b) are better reproduced by the full Reynolds-stress model
though both models produce a larger discrepancy with the measurements. However, looking
at iso-lines of the pressure, normal and shear stresses as shown in Figures 23(a)–(c), only
small discontinuities can be observed on the arbitrary interface showing that the algorithm
proposed here provides appropriate numerical solution.
The next example is a weakly compressible �ow in the intake port. The �ow structure

and the turbulence level in internal engines have a signi�cant e�ect on the �uid mixing and
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Figure 21. Predicted mean velocity at the location x = −0:143 (a) and x = −0:063 (b) corresponding
to the back slant region of the Ahmed body.

Figure 22. Predicted streamwise turbulence intensity at the location x = −0:143 (a) and x = −0:063
(b) corresponding to the back slant region of the Ahmed body.

combustion processes. Concerning numerical calculations, it is critical to predict turbulence
intensity and it’s distribution. Otherwise, the �ow �eld and parameters important for identi-
fying engine’s performances can be missed considerably. The most critical position for the
turbulence kinetic energy prediction is the region below the valve. Overproduction of tur-
bulence kinetic energy changes the spreading rate of the jet and causes di�erent mixing in
the cylinder. Typical intake port con�guration and turbulence energy predicted with the RSM
model are shown in Figures 24 and 25. The results were obtained on a grid consisting of
222 000 computational cells. The grid employs hexahedral cells distributed near the wall to
ensure that y+ value is between 30 and 100 in most of the domain. The AVL SMART dif-
ferencing scheme for convection term [24] was used for the present calculations. The constant
static pressure is speci�ed at the outlet and the mass �ow is given at the inlet. Calculations
are compared with the measurements obtained by LDA at the cylinder cross section in a
distance of 1.75D from the bottom of the cylinder head (D=0:078m). The velocity �elds at
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Figure 23. Predicted iso-lines of the pressure (a), u2 normal (b) and shear uv stress components.

the measured cross section as predicted by k–� and RSM are shown in Plate 1(a–c). Velocity
vectors are shown at certain radial positions which do not represent the positions of computa-
tional cells, only to allow easier comparisons with the measurements. A stronger swirl motion
predicted by the k–� model can be observed. This is also con�rmed by the global parameters
summarized in Table II. The RSM model predicts all parameters better than the k–� model but
there is still visible disagreement with the measurements. The blame can probably be placed
on the standard wall function used in conjunction with the both of the models. The calcula-
tions with the full Reynolds-stress model were almost three times slower than with the k–�
model.
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Figure 24. Intake port. Computational domain and grid.

5. CONCLUSIONS

The method for the implementation of the second-moment closure into a polyhedral �nite
volume approach is reported in this paper. In comparison to previous publications, the main
issues are done di�erently: a discretization of di�usion terms in all equations (especially
important for momentum equations), a coupling procedure for the velocity and pressure where
stresses are not included but rather 2

3 k and the new wall approach for the Reynolds-stresses.
The variety of di�erent �ows were predicted by the second-moment closure: a fully developed
boundary layer in a plane and curved channel, steady and transient separating �ows, two and
three-dimensional �ows, incompressible and weakly compressible �ows. Di�erent grids were
used for the calculations: hexahedral body �tted grids, hybrid grids including all types of
cells up to six faces and the grids with polyhedral cells created at the arbitrary interface.
Therefore, it was shown that the second-moment closure can be e�ciently applied on any

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:377–407



SECOND-MOMENT TURBULENCE CLOSURE 405

Figure 25. Predicted turbulence kinetic energy by the RSM.

Table II. Measured and calculated engine parameters (Mt—torque, SN—swirl number,
��—discharge coe�cient).

�� Mt SN

Data 0.473 0.12 1.646
k–� 0.45 0.0158 2.01
RSM 0.4625 0.142 1.80

arbitrary unstructured grid. The numerical algorithm proposed in this paper is simple, easy to
incorporate in existing Navier–Stokes type of codes and obviously robust enough to be also
used for industrial applications.

REFERENCES

1. Obi S, Peric M, Scheuerer G. A �nite volume calculation procedure for turbulent �ows with second-order
closure and coloacated variable arrangement. Proceedings of the 7th Symposium on Turbulent Shear Flows,
Stanford University, USA, 1989.

2. Lien FS, Leschziner MA. Second-moment modelling of recirculating, �ows with a non-orthogonal collocated
�nite-volume algorithm. In Turbulent Shear Flows, Durst et al. (eds). 1993; 8:205–222.

3. Farnanieh B, Davidson L, Sunden B. Employment of second-moment closure for calculation of turbulent
recirculating �ows in complex geometries with collocated variable arrangement. International Journal for
Numerical Methods in Fluids 1993; 16:525.

4. Lai YG. Computational method of second-moment closure in complex geometries. AIAA Journal 1995; 33:1426.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:377–407



406 B. BASARA

5. Rhie CM, Chow WL. Numerical study of the turbulent �ow past an airfoil with trailing edge separation. AIAA
Journal 1983; 21:1525–1532.

6. Demirdzic I, Muzaferija S. Numerical method for coupled �uid �ow, heat transfer and stress analysis using
unstructured moving meshes with cells of arbitrary topology. Computer Methods in Applied Mechanics and
Engineering 1995; 125:235–255.

7. Ferziger JH, Peric M. Computational Methods for Fluid Dynamics. Springer: Berlin, 1996.
8. Marthur SR, Murthy JY. A pressure based method for unstructured meshes. Numerical Heat Transfer B, 1997;
31:195–215.

9. Speziale CG, Sarkar S, Gatski TB. Modeling the pressure-strain correlation of turbulence, an invariant dynamical
systems approach. Journal of Fluid Mechanics 1991; 227:45–272.

10. Launder BE, Spalding DB. The numerical computation of turbulent �ows. Computer Methods in Applied
Mechanics and Engineering 1974: 3:269–289.

11. Muzaferija S. Adaptive �nite volume method for �ow predictions using unstructured meshes and multigrid
approach. Ph.D. Thesis, Imperial College, University of London, UK, 1994.

12. Basara B. A numerical study into the e�ects of turbulent �ows around full-scale buildings. Ph.D. Thesis, City
University of London, UK, 1993.

13. Basara B. Two-layer model combining the Reynolds-stress model with the low Re-number k–� model near the
wall. ASME paper, 1998-4896, 1998.

14. Peric M. A �nite volume method for the prediction of three-dimensional �uid �ows in complex ducts. Ph.D.
Thesis, University of London, UK, 1985.

15. Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three-dimensional
parabolic �ows. International Journal of Heat Mass Transfer 1972; 15:1510–1520.

16. Obi S. Berechnung komplexer turbulenter Str�omungen mit einem Reynolds-Spannungs-Modell. w predictions
using unstructured meshes and multigrid approach. Ph.D. Thesis, University of Erlangen, Germany, 1991.

17. Lien FS, Leschziner MA. A general non-orthogonal collocated �nite volume algorithm for turbulent �ow at
all speeds incorporating second-moment turbulence-transport closure, Part 1: Computational implementation.
Computer Methods in Applied Mechanics and Engineering 1994; 114:123–148.

18. Basara B, Younis BA. Assessment of the SSG pressure-strain model in two-dimensional turbulent separated
�ows. Applied Scienti�c Research 1995; 55:39–61.

19. Hanjalic K, Jakirlic S. Contribution towards the second-moment closure modelling of separating turbulent �ows.
Computers and Fluids 1998; 22(2):137–156.

20. Lasher WC, Taulbee DB. On the computation of turbulent back-step �ow. International Journal of Heat and
Fluid Flow 1992; 1:30–40.

21. Basara B. Computations of automotive �ows using the second-moment closure. Proceedings of ECCOMAS
2000, Barcelona, Spain, September 11–14, 2000.

22. Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel �ow at the low Reynolds number.
Journal of Fluid Mechanics 1987; 177:133–166.

23. Hunt IA, Joubert PN. E�ects of small streamline curvature on turbulent duct �ow. Journal of Fluid Mechanics
1979; 91:633–658.

24. Przulj V, Basara B. Bounded convection schemes for unstructured grids. AIAA Paper 2001-2593, 2001.
25. Sweby PK. High resolution schemes using �ux limiters for hyperbolic conservation laws. SIAM Journal on

Numerical Analysis 1984; 21:995–1011.
26. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric

linear system. SIAM Journal on Scienti�c Computing 1992; 13:631–644.
27. Meijerink JA, Van der Vorst HA. Guidelines for the usage of incomplete decompositions in solving sets of

linear equations as they occur in practical problems. Journal of Computational Physics 1981; 44:134–155.
28. Monson DJ, Seegmiller HL, McConnaughey PK. Comparison of LDV measurements and Navier–Stokes

equations in a two-dimensional 180-degree turn-around duct. AIAA Paper 89-0275, Reno, Nevada, 1989.
29. Basara B, Cokljat D, Younis BA. Assessment of eddy-viscosity and Reynolds-stress transport closures in two-

and three-dimensional turn-around ducts. ASME FED 1995; 217:249–256.
30. Shur ML, Strelets MK, Travin AK, Spalart PR. Turbulence modelling in rotating and curved channels: assessing

the Spalart-Shur correction. AIAA Journal 2000; 38(5):784–792.
31. Lyn DA. Ensemble-averaged measurements in the turbulent near wake of a square cylinder: a Guide to the

data. Report CE-HSE-92-6, School of Civil Engineering, Purdue University, USA, 1992.
32. Bearmen PW, Obasaju ED. An experimental study of pressure �uctuations on �xed and oscillating square

cylinders. Journal of Fluid Mechanics 1982; 119:297.
33. Franke R, Rodi W. Calculation of vortex shedding past a square cylinder. Proceedings of 8th Symposium on

Turbulent Shear Flows, Munich, Germany, 1991.
34. Rodi W, Ferziger JH, Breuer M, Pourquie M. Status of large Eddy simulation: results of a workshop. Journal

of Fluids Engineering 1997; 119:248.
35. Kato M, Launder BE. The modeling of turbulent �ow around stationary and vibrating square cylinder.

Proceedings of 9th Symposium on Turbulent Shear Flows, Kyoto, Japan, 1993.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:377–407



SECOND-MOMENT TURBULENCE CLOSURE 407

36. Ahmed SR, Ramm G, Faltin G. Some salient features of the time-averaged ground vehicle wake. SAE paper
840300, Detroit, USA, 1984.

37. Lienhart H, Stoots C, Becker S. Flow and turbulence structures in the wake of a simpli�ed car model (Ahmed
Model). Notes on Numerical Fluid Mechanics, Wagner et al. (eds). 2002; 77:323–330.

38. Jakirlic S, Jester-Zurker R, Tropea C. Proceedings of the 9th ERCOFTAC/IAHR/COST Workshop on Re�ned
Turbulence Modelling, Darmstadt, Germany, 2001.

39. Basara B, Alajbegovic A. Steady state calculations of turbulent �ows around Morel Body. Proceedings of the
7th International Symposium on Flow Modelling and Fluid Measurements, Tainan, Taiwan, October 5–8, 1998.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:377–407



Plate 1. Velocity vectors projected at the cross section as provided by measurements (a), and predicted
by k–� (b) and RSM (c) models.
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